

ILARA-MOKIN ONDO STATE

FACULTY: Basic and Applied Sciences

DEPARTMENT: Physical and Chemical Sciences

SECOND SEMESTER EXAMINATIONS 2017/2018 ACADEMIC SESSION

COURSE CODE: PHY 402

COURSE TITLE: QUANTUM MECHANICS II

DURATION: 3 HOURS

HOD's SIGNATURE

TOTAL MARKS:

Matriculation Number: _____

INSTRUCTIONS:

- 1. Write your matriculation number in the space provided above and also on the cover page of the exam booklet.
- 2. This question paper consists of 2 pages with printing on both sides.
- 3. Answer all questions in the examination booklet provided.
- 4. More marks are awarded for problem solving method used to solving problems than for the final numerical answer.
- 5. Box your final answers.
- 6. Attempt 2 of the 3 questions in each of the sections, making it a total of 4 out of 6 questions.

SECTION A

- 1. (a) Consider the second and third quantum numbers, the azimuthal (l) and magnetic (ml) quantum numbers, respectively.
 - (i) Give a short description of the physical meaning of each of these two quantum numbers
 - (ii) Give the range of allowed values for these two quantum numbers
 - (b) Each row in the table represents a set of orbitals (e.g. the 2p orbitals). Complete the table

n	1	mı	Orbital designation	Number of orbitals
1				1
3		-1, 0, 1		3
4	3			7
5			5p	

- 2. Given that the 1s wavefunction for the ground state of hydrogen is given by $R_{1s} = Ae^{-r/a}_B$. Determine:
 - (a) The constant A
 - (b) The expectation value of the potential energy.
- 3. (a). Explain the term "degeneracy".
 - (b). Consider a particle of mass M in a two-dimensional, rigid rectangular box with sides a and b. Using the method of separation of variables, find the allowed energies and wavefunction for this particle.

SECTION B

- 4. Consider a particle in the two-dimensional, symmetrical, infinite potential well. The particle is subject to the perturbation W = Cxy, where C is a constant.
 - (a). Compute the first order correction to the Eigen-energies.
 - (b). The wavefunction of the first excited level.
- 5. A given wavefunction is $\Psi = N \sin\theta \cos\phi$
 - (a). Find the normalization constant N.
 - (b). What is the mean value of L² and Lz for this state?
- 6. Consider a one-dimensional harmonic oscillator with $\widehat{H} = \frac{-h^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2} m w^2 x^2$. For the one-parameter family of wavefunctions, $\varphi_{\alpha}(x) = e^{-\alpha x^2} (\alpha > 0)$. Compute:
 - (a). The wavefunction that minimizes $\langle \widehat{H} \rangle$.
 - (b). The value of $\langle \widehat{H} \rangle min$